Categories
Python XPlane

Adding track following (Direct To) with cross track error to the Python X-Plane Autopilot

Continuing from the last post (Adding some polish to the X-Plane Python Autopilot with Flask, Redis, and WebSockets), I have a bit of momentum going on the Python X-Plane Autopilot stuff. There were a couple of items I wanted to complete before declaring the project “done”. The first is a “takeoff” button, which isn’t yet done. The other is the ability to fly along a track. That is now complete as of last night.

It is one thing to fly a bearing from A to B. That works fine as long as there is no wind in any direction. Flying a heading set by bearing is easy, and is part of the heading select & hold feature built out in a previous iteration of the code. To do so requires a “desired heading” and a heading error PID. The goal is to minimize the heading error, so we set the setpoint to 0. This controls a “roll” PID controller, which controls an aileron PID controller.

Each have limits in place to prevent excessive movement. For example, the roll PID controller is limited to +/- 30 degrees. Pitch is +/- 15 degrees.

To take this to the next step requires a few things:

  • A “track”, which is commonly defined as a start point and an end point. Both are simply lat/lon coordinate sets.
  • A current location, which is current lat/lon
  • A cross track distance (error), which is the distance the current location is off the track.
  • More PID loops, namely a cross track distance PID control, which, like the heading error PID, has a setpoint of 0 (i.e. the goal is to minimize the cross track distance).

Additionally, to make something actually useful, we need a “database” of navigation points. I parsed the fixed-width delimited text files of X-Plane for this, which was not fun.

To tie it all together, the web interface needs a way to type in a nav point, and a Direct To (D->To) button. Direct to is common in aviation GPS units to set a track from the location when the button is pushed to some point (VOR, fix, airport, etc). I’ve emulated that functionality.

Here’s the screenshot showing the example aircraft navigating to DVV, which is the KDEN VOR, from somewhere near KBJC. It shows a cross track error of 0.056 km, or 56 meters. ChatGPT helpfully generated the cross track error function with a resultant number in meters. I am comfortable with many kinds of units so I’ll leave this for now. The red line on the right map view is the aircraft’s interpretation of the direct to set at the same time as I clicked my autopilot’s Direct To button. There is a 4 kt wind coming from 029. I tested with greater, somewhat constant crosswinds in the 40-50 kt range with gusts of +/- 5 kts.

screenshot showing python autopilot code controlling xplane, flying aircraft along a track

The cross track error settles down to < 10 m after a minute or so. It is a little “lazy”. If it is on a track that is due east, and I flip the track to due west, it’ll dutifully do the 180, then attempt to rejoin the track but it overshoots a bit and settles down after ~1 oscillation. I could probably turn up the P on the xte PID and that would help. Below is a track of tacking off from KBJC and the doing direct to DVV. The X is where I clicked Direct to back to the BJC VOR, it turned left and rejoined the track, overshooting, then settling back in nicely.

plot showing the lat/lon track of the aircraft doing almost a complete 180 to rejoin the track going the opposite direction with python autopilot code

The Python Autopilot Code

I’m not going to pretend I wrote the cross track distance code, nor will I pretend to understand it. It works. The sign of the result depends on something along the lines of which side of the great circle line you are on. Luckily, aircraft (and boats and other things that follow tracks) don’t typically go from B to A. They go from A to B so this is consistent no matter which direction the track is facing. If they do need to go back to the start, the start becomes the end, if that makes sense.

This is the glorious cross track distance code along with some test code. Using Google Earth, the distance from the KBJC control tower to the centerline of 30R/12L should be ~0.44 km.

def cross_track_distance(point, start, end):
    # Convert all latitudes and longitudes from degrees to radians
    point_lat, point_lon = math.radians(point[0]), math.radians(point[1])
    start_lat, start_lon = math.radians(start[0]), math.radians(start[1])
    end_lat, end_lon = math.radians(end[0]), math.radians(end[1])

    # Calculate the angular distance from start to point
    # Ensure the argument is within the domain of acos
    acos_argument = math.sin(start_lat) * math.sin(point_lat) + math.cos(start_lat) * math.cos(point_lat) * math.cos(point_lon - start_lon)
    acos_argument = max(-1, min(1, acos_argument))  # Clamp the argument between -1 and 1
    delta_sigma = math.acos(acos_argument)

    # Calculate the bearing from start to point and start to end
    theta_point = math.atan2(math.sin(point_lon - start_lon) * math.cos(point_lat),
                             math.cos(start_lat) * math.sin(point_lat) - math.sin(start_lat) * math.cos(point_lat) * math.cos(point_lon - start_lon))
    theta_end = math.atan2(math.sin(end_lon - start_lon) * math.cos(end_lat),
                           math.cos(start_lat) * math.sin(end_lat) - math.sin(start_lat) * math.cos(end_lat) * math.cos(end_lon - start_lon))

    # Calculate the cross track distance
    cross_track_dist = math.asin(math.sin(delta_sigma) * math.sin(theta_point - theta_end))

    # Convert cross track distance to kilometers by multiplying by the Earth's radius (6371 km)
    cross_track_dist = cross_track_dist * 6371

    return cross_track_dist

kbjc_runways = {
	"30R/12L": {
		"Runway 12L": {
			"Latitude": 39.91529286666667,
			"Longitude": -105.12841313333334
		},
		"Runway 30R": {
			"Latitude": 39.901373883333335,
			"Longitude": -105.10191808333333
		}
	}
}


kbjc_runway_30R_start = (kbjc_runways["30R/12L"]["Runway 30R"]["Latitude"], kbjc_runways["30R/12L"]["Runway 30R"]["Longitude"])
kbjc_runway_30R_end = (kbjc_runways["30R/12L"]["Runway 12L"]["Latitude"], kbjc_runways["30R/12L"]["Runway 12L"]["Longitude"])
kbjc_tower = (test_locations["kbjc_tower"]["lat"], test_locations["kbjc_tower"]["lon"])
def test_cross_track_distance():
	print(f"start lat: {kbjc_runway_30R_start[0]}, start lon: {kbjc_runway_30R_start[1]}")
	print(f"end lat: {kbjc_runway_30R_end[0]}, end lon: {kbjc_runway_30R_end[1]}")
	print(f"tower lat: {kbjc_tower[0]}, tower lon: {kbjc_tower[1]}")

	dist = cross_track_distance(kbjc_tower, kbjc_runway_30R_start, kbjc_runway_30R_end)
	print(f"cross track distance: {dist}")

test_cross_track_distance()

And the rest of the magic happens in this block. If you recall from the last post (Adding some polish to the X-Plane Python Autopilot with Flask, Redis, and WebSockets), I am using Redis as a store to hold the setpoints from the web app controlling the autopilot. It is fast enough that I don’t need to worry about latency when running at 10 Hz (the loop durations are consistently less than 30 milliseconds, with the bulk of that time being used to get and set data from X-Plane itself).

# get the setpoints from redis
			setpoints = get_setpoints_from_redis()

			# check if we have just changed to direct-to mode and if so, update the direct to coords. same if the target waypoint has changed
			if (setpoints["hdg_mode"] == "d_to" and previous_nav_mode != "d_to") or (setpoints["target_wpt"] != previous_nav_target):
				print("reason for entering this block")
				print(f"previous nav mode: {previous_nav_mode}, setpoints hdg mode: {setpoints['hdg_mode']}, previous nav target: {previous_nav_target}, setpoints target wpt: {setpoints['target_wpt']}")
				
				# d_to_start_coords is the current position, in lat,lon tuple
				d_to_start_coords = (posi[0], posi[1])

				# this function does a lookup in the nav_points dataframe to get the lat, lon of the target waypoint
				# it could certainly be optimized to use something faster than a pandas dataframe
				d_to_target_coords = get_nav_point_lat_lon(setpoints["target_wpt"])

				# reset xte PID
				xte_PID.clear()
				print(f"setting d_to_start_coords to {d_to_start_coords}")

			# these are unchanged
			desired_alt = setpoints["desired_alt"]
			desired_speed = setpoints["desired_speed"]

			if setpoints["hdg_mode"] == "hdg":
				# if we're in heading mode, just use the desired heading. this is mostly unchanged from the previous iteration
				desired_hdg = setpoints["desired_hdg"]
				heading_error = get_angle_difference(desired_hdg, current_hdg)
				heading_error_PID.update(heading_error)
				
			elif setpoints["hdg_mode"] == "d_to":
				# if we're in direct-to mode, calculate the cross-track error and update the xte_PID.
				# I am using xte to mean cross-track error/distance
				xte = cross_track_distance((posi[0], posi[1]), d_to_start_coords, d_to_target_coords)
				xte_PID.update(xte)

				# calculate the heading correction based on the xte_PID output
				heading_correction = xte_PID.output

				# this is essentially saying for 1 km of cross-track error, we want to correct by 30 degrees
				heading_correction = heading_correction * 30

				# limit the heading correction to -45 to 45 degrees
				heading_correction = normalize(heading_correction, -45, 45)

				# calculate the track heading to the target waypoint. the track heading is the heading we would
				# need to fly to get to the target waypoint from the current position. it is used as an initial heading
				track_heading = get_bearing((posi[0], posi[1]), d_to_target_coords)

				# adjust the desired heading by the heading correction
				adjusted_desired_hdg = track_heading + heading_correction

				# make sure the adjusted desired heading is between 0 and 360
				adjusted_desired_hdg = adjusted_desired_hdg % 360

				# calculate the heading error based on the adjusted desired heading, this is no different than the hdg mode
				adjusted_heading_error = get_angle_difference(adjusted_desired_hdg, current_hdg)
				heading_error_PID.update(adjusted_heading_error)

				# log the current values
				print(f"track hdg: {track_heading:.1f}, heading corr: {heading_correction:.1f}, adj desired hdg: {adjusted_desired_hdg:.1f}, adj heading err: {adjusted_heading_error:.1f}")

				# write to a log file so we can make nice plots for the blog post
				log_line = f"{datetime.now().strftime('%Y-%m-%d %H:%M:%S.%f')[:-3]},{posi[0]},{posi[1]},{posi[2]},{xte},{xte_PID.output},{track_heading},{heading_correction},{adjusted_desired_hdg},{adjusted_heading_error}"
				with open(current_run_log_filename, "a") as log_file:
					log_file.write(log_line + "\n")

Getting nav data from X-Plane data files

If you looked at the code closely, you will see the d_to_target_coords is set via a function called get_nav_point_lat_lon(nav_point). This looks up lat/lon in a file that was generated by parsing the X-Plane navigation data. In my previous job, I dealt with fixed width data formats. It is not fun. I originally tried to split based on spaces, but some of the nav point names have more than one space in them. I suppose I could just ignore the name but this is already written. This code parses the earth_nav.dat file, specifically for type 3, which is VOR/DME-like.

import pandas as pd

nav_filepath = r"C:\Users\Austin\Desktop\X-Plane 10\Resources\default data\earth_nav.dat"

raw_file_data = open(nav_filepath, 'r').readlines()

# remove first 3 lines
raw_file_data = raw_file_data[3:]

# remove last line
raw_file_data = raw_file_data[:-1]

# remove new line characters
raw_file_data = [line.replace('\n', '') for line in raw_file_data]

# Adjusting the function based on the new column map provided
def parse_nav_info(line):
    column_map = {
        'type': {'start': 0, 'end': 1},
        'lat_sign': {'start': 2, 'end': 3},
        'latitude': {'start': 3, 'end': 15},
        'lon_sign': {'start': 15, 'end': 16},
        'longitude': {'start': 16, 'end': 28},
        'elevation': {'start': 29, 'end': 35},
        'frequency': {'start': 36, 'end': 41},
        'range': {'start': 42, 'end': 45},
        'unknown': {'start': 46, 'end': 52},
        'identifier': {'start': 53, 'end': 56},
        'name': {'start': 56}  # Assuming end is not needed; take till the end of the line
    }

    nav_info = {}
    for column, column_info in column_map.items():
        start = column_info['start']
        end = column_info.get('end', None)
        value = line[start:end].strip()
        # print(f"attempting to parse {column} with value {value}")
        if column == 'latitude':
            lat_sign = line[column_map['lat_sign']['start']:column_map['lat_sign']['end']]
            lat_sign = -1 if lat_sign == '-' else 1
            value = lat_sign * float(value)
        elif column == 'longitude':
            lon_sign = line[column_map['lon_sign']['start']:column_map['lon_sign']['end']]
            lon_sign = -1 if lon_sign == '-' else 1
            value = lon_sign * float(value)
        elif column == 'elevation':
            value = int(value)
        elif column == 'frequency':
            value = int(value)
        elif column == 'range':
            value = int(value)
        nav_info[column] = value

    return nav_info

i = 0
data = []
types = []
for line in raw_file_data:
    line_type = int(line[0:2])
    if line_type != 3:
        continue

    line_data = parse_nav_info(line)
    data.append(line_data)

df = pd.DataFrame(data)
columns_of_interest = ['identifier','latitude','longitude','elevation', 'frequency', 'range', 'name']
df = df[columns_of_interest]
df.head()

df.to_pickle('nav_data.pkl')

The code to read the file and import is at the beginning of the python_autopilot.py file and is fairly straightforward:

# nav_data.pkl is a pandas dataframe. yes, this should use a dict or something faster.
nav_points = pickle.load(open("nav_data.pkl", "rb"))

def get_nav_point_lat_lon(id):
	nav_point = nav_points[nav_points["identifier"] == id]
	return nav_point["latitude"].values[0], nav_point["longitude"].values[0]

And for the Flask side of the house, we have index.html:

<!DOCTYPE html>
<html>
<head>
    <title>Autopilot Interface</title>
    <script src="https://cdnjs.cloudflare.com/ajax/libs/socket.io/4.0.1/socket.io.js"></script>
<script type="text/javascript" charset="utf-8">
    var socket;  // Declare socket globally

    // Define adjustSetpoint globally
    function adjustSetpoint(label, adjustment) {
        socket.emit('adjust_setpoint', {label: label, adjustment: adjustment});
    }

    function submitDirectTo() {
        const stationId = document.getElementById('target_wpt_input').value; // Grab the value from the input
        if (stationId) { // Check if the stationId is not empty
            adjustSetpoint('target_wpt', stationId); // Adjust the setpoint with the stationId as the value
            adjustSetpoint('hdg_mode', "d_to"); // Your existing function call
        } else {
            alert("Please enter a station ID.");
        }
    }

    document.addEventListener('DOMContentLoaded', () => {
        socket = io.connect(location.protocol + '//' + document.domain + ':' + location.port);
        
        socket.on('connect', () => {
            console.log("Connected to WebSocket server.");
        });

        // Listen for update_setpoints event to initialize the UI with Redis values
        socket.on('update_setpoints', function(setpoints) {
          for (const [label, value] of Object.entries(setpoints)) {
              const element = document.getElementById(label);
              if (element) {
                  element.innerHTML = value;
              }
          }
      });

        // Listen for update_setpoint events from the server
        socket.on('update_setpoint', data => {
            // Assuming 'data' is an object like {label: new_value}
            for (const [label, value] of Object.entries(data)) {
                // Update the displayed value on the webpage
                const element = document.getElementById(label);
                if (element) {
                    element.innerHTML = value;
                }
            }
        });
    });
</script>
<style>
    body {
        font-family: Arial, sans-serif;
        margin: 20px;
        background-color: #f4f4f4;
        color: #333;
    }
    h1 {
        color: #005288;
    }
    ul {
        list-style-type: none;
        padding: 0;
    }
    ul li {
        margin: 10px 0;
    }
    button, input[type="text"] {
        padding: 10px;
        margin-top: 5px;
        border: 1px solid #ccc;
        border-radius: 5px;
        cursor: pointer;
        font-size: 16px;
    }
    button:hover {
        background-color: #ddd;
    }
    .button-group {
        margin-bottom: 20px;
    }
    #target_wpt_input {
        margin-right: 10px;
    }
</style>

</head>
<body>
    <h1>Autopilot Interface</h1>
    <p>Current Setpoints:</p>
    <ul>
        <li>Heading: <span id="desired_hdg">0</span></li>
        <li>Altitude: <span id="desired_alt">0</span></li>
        <li>Speed: <span id="desired_speed">0</span></li>
        <li>Heading Mode: <span id="hdg_mode">0</span></li>
        <li>Target Waypoint: <span id="target_wpt">BJC</span></li>
    </ul>
    <p>Autopilot: <span id="autopilot_enabled">OFF</span></p>

    <!-- Example buttons for adjusting setpoints -->
    <div class="button-group">
        <button onclick="adjustSetpoint('desired_hdg', -10)">-10 HDG</button>
        <button onclick="adjustSetpoint('desired_hdg', 10)">+10 HDG</button>
    </div>
    <div class="button-group">
        <button onclick="adjustSetpoint('desired_alt', 500)">+500 ALT</button>
        <button onclick="adjustSetpoint('desired_alt', -500)">-500 ALT</button>
    </div>
    <div class="button-group">
        <button onclick="adjustSetpoint('desired_speed', 5)">+5 KTS</button>
        <button onclick="adjustSetpoint('desired_speed', -5)">-5 KTS</button>
    </div>
    <div class="button-group">
        <button onclick="adjustSetpoint('hdg_mode', 'hdg')">Follow Heading</button>
        <input type="text" id="target_wpt_input" value="BJC">
        <button onclick="submitDirectTo()">Direct To</button>
    </div>
    <div class="button-group">
        <button onclick="adjustSetpoint('autopilot_enabled', 1)">Enable Autopilot</button>
        <button onclick="adjustSetpoint('autopilot_enabled', 0)">Disable Autopilot</button>
    </div>

</body>
</html>

And the Flask app itself. I still think WebSockets are magic.

from flask import Flask, render_template
from flask_socketio import SocketIO, emit
import redis

app = Flask(__name__)
socketio = SocketIO(app)
r = redis.StrictRedis(host='localhost', port=6379, db=0)

setpoints_of_interest = ['desired_hdg', 'desired_alt', 'desired_speed']
# get initial setpoints from Redis, send to clients

@app.route('/')
def index():
    return render_template('index.html')  # You'll need to create an HTML template

def update_setpoint(label, adjustment):
    # This function can be adapted to update setpoints and then emit updates via WebSocket
    current_raw_value = r.get(label) if r.exists(label) else None
    if current_raw_value is not None:
        try:
            current_value = float(current_raw_value)
        except ValueError:
            current_value = current_raw_value

    if label == 'desired_hdg':
        new_value = (current_value + adjustment) % 360
    elif label == 'autopilot_enabled':
        new_value = adjustment
    elif label == 'hdg_mode':
        new_value = adjustment
    elif label == 'target_wpt':
        new_value = adjustment
    else:
        new_value = current_value + adjustment

    r.set(label, new_value)
    # socketio.emit('update_setpoint', {label: new_value})  # Emit update to clients
    return new_value

@socketio.on('adjust_setpoint')
def handle_adjust_setpoint(json):
    label = json['label']
    adjustment = json['adjustment']
    # Your logic to adjust the setpoint in Redis and calculate new_value
    new_value = update_setpoint(label, adjustment)

    # Emit updated setpoint to all clients
    emit('update_setpoint', {label: new_value}, broadcast=True)

@socketio.on('connect')
def handle_connect():
    # Fetch initial setpoints from Redis
    initial_setpoints = {label: float(r.get(label)) if r.exists(label) else 0.0 for label in setpoints_of_interest}
    
    # Emit the initial setpoints to the connected client
    emit('update_setpoints', initial_setpoints)

if __name__ == '__main__':
    socketio.run(app)

And here’s the full code of the autopilot itself. This will be transferred to GitHub for the next post. It is a bit long and needs to be split out into a number of separate files.

Conclusion

With a cross track distance known, it isn’t terribly difficult to convert that distance (error) into a heading adjustment. We now have a functioning autopilot that can control our aircraft to any VOR-like point. I could extend the X-Plane nav data parsing to read all points, but I’ll leave that as an exercise for the reader. The X-Plane Python Autopilot is almost complete – all that I have left on the checklist is a “takeoff” button. Hope you enjoyed the post!

References

This page was pretty helpful for realizing the code for determining the cross track distance would be complicated – http://www.movable-type.co.uk/scripts/latlong-vincenty.html. A good bit of the code was generated by ChatGPT as well.

Categories
Python XPlane

Adding some polish to the X-Plane Python Autopilot with Flask, Redis, and WebSockets

I revisited my Python X-Plane autopilot a few weeks ago because it was pretty clunky for how to adjust setpoints and such. The job I started 1.5 years ago is exclusively Python, so I wanted to redo a bit.

Quick aside: For the new PC I just built – Ryzen 9 7900x, 2x32GB 6000 MHz, etc, X-Plane 10 was the 2nd “game” I installed on it. The first was Factorio (I followed Nilaus’ megabase in a book and have got to 5k SPM). Haven’t tried the newer sims yet, but I think they’ll still be somewhat limited by my RTX 2080 Super.

Well imagine my surprise when I woke up to 6x the normal daily hits by 7am. I checked the weblogs and found that my post was trending on ycombinator.com (Hacker News). So I am going to skip pretty much all background and just post the updated code for now, and will go back and clean up this post at some point.

Without further ado: here’s what the super basic dashboard looks like

Screenshot showing HTML autopilot interface running x-plane via Python

I have it separated into two main running python programs, the file that interacts with X-Plane itself, and the Flask part.

Check here for the updated code / next iteration where I add track following and direct-to functionality – Adding track following (Direct To) with cross track error to the Python X-Plane Autopilot.

Here’s the adjusted autopilot code to check with Redis for the setpoints every loop execution:

# https://onion.io/2bt-pid-control-python/
# https://github.com/ivmech/ivPID

import sys
import os
import xpc
from datetime import datetime, timedelta
import PID
import time
import math, numpy
import redis

r = redis.StrictRedis(host='localhost', port=6379, db=0)

setpoints = {
	"desired_roll": 0,
	"desired_pitch": 2,
	"desired_speed": 160,
	"desired_alt": 8000.0,
	"desired_hdg": 140,
	"autopilot_enabled": 0
}

for key in setpoints:
	# if the key exists in the redis db, use it
	# otherwise, set it
	if r.exists(key):
		setpoints[key] = float(r.get(key))
	else:
		r.set(key, setpoints[key])

update_interval = 0.10 #seconds
update_frequency = 1/update_interval

P = 0.05
I = 0.01
D = 0
MAX_DEFLECTION_PER_SECOND = 2.0

roll_PID = PID.PID(P*2, I*2, D)
roll_PID.SetPoint = setpoints["desired_roll"]

pitch_PID = PID.PID(P, I, D)
pitch_PID.SetPoint = setpoints["desired_pitch"]

altitude_PID = PID.PID(P*2, P/2, D)
altitude_PID.SetPoint = setpoints["desired_alt"]

speed_PID = PID.PID(P, I, D)
speed_PID.SetPoint = setpoints["desired_speed"]

heading_error_PID = PID.PID(1,0.05,0.1)
heading_error_PID.SetPoint = 0 # need heading error to be 0

DREFs = ["sim/cockpit2/gauges/indicators/airspeed_kts_pilot",
		"sim/cockpit2/gauges/indicators/heading_electric_deg_mag_pilot",
		"sim/flightmodel/failures/onground_any",
		"sim/flightmodel/misc/h_ind"]

def normalize(value, min=-1, max=1):
	if (value > max):
		return max
	elif (value < min):
		return min
	else:
		return value

def sleep_until_next_tick(update_frequency):
    # Calculate the update interval from the frequency
    update_interval = 1.0 / update_frequency

    # Get the current time
    current_time = time.time()

    # Calculate the time remaining until the next tick
    sleep_time = update_interval - (current_time % update_interval)

    # Sleep for the remaining time
    time.sleep(sleep_time)
	
# https://rosettacode.org/wiki/Angle_difference_between_two_bearings#Python
def get_angle_difference(b1, b2):
	r = (b2 - b1) % 360.0
	# Python modulus has same sign as divisor, which is positive here,
	# so no need to consider negative case
	if r >= 180.0:
		r -= 360.0
	return r

# https://gist.github.com/jeromer/2005586
def get_bearing(pointA, pointB):
    """
    Calculates the bearing between two points.
    The formulae used is the following:
        θ = atan2(sin(Δlong).cos(lat2),
                  cos(lat1).sin(lat2) − sin(lat1).cos(lat2).cos(Δlong))
    :Parameters:
      - `pointA: The tuple representing the latitude/longitude for the
        first point. Latitude and longitude must be in decimal degrees
      - `pointB: The tuple representing the latitude/longitude for the
        second point. Latitude and longitude must be in decimal degrees
    :Returns:
      The bearing in degrees
    :Returns Type:
      float
    """
    if (type(pointA) != tuple) or (type(pointB) != tuple):
        raise TypeError("Only tuples are supported as arguments")

    lat1 = math.radians(pointA[0])
    lat2 = math.radians(pointB[0])

    diffLong = math.radians(pointB[1] - pointA[1])

    x = math.sin(diffLong) * math.cos(lat2)
    y = math.cos(lat1) * math.sin(lat2) - (math.sin(lat1)
            * math.cos(lat2) * math.cos(diffLong))

    initial_bearing = math.atan2(x, y)

    # Now we have the initial bearing but math.atan2 return values
    # from -180° to + 180° which is not what we want for a compass bearing
    # The solution is to normalize the initial bearing as shown below
    initial_bearing = math.degrees(initial_bearing)
    compass_bearing = (initial_bearing + 360) % 360

    return compass_bearing

# https://janakiev.com/blog/gps-points-distance-python/
def haversine(coord1, coord2):
    R = 6372800  # Earth radius in meters
    lat1, lon1 = coord1
    lat2, lon2 = coord2
    
    phi1, phi2 = math.radians(lat1), math.radians(lat2) 
    dphi       = math.radians(lat2 - lat1)
    dlambda    = math.radians(lon2 - lon1)
    
    a = math.sin(dphi/2)**2 + \
        math.cos(phi1)*math.cos(phi2)*math.sin(dlambda/2)**2
    
    return 2*R*math.atan2(math.sqrt(a), math.sqrt(1 - a))

KBJC_lat = 39.9088056
KBJC_lon = -105.1171944

def write_position_to_redis(position):
	# position is a list of 7 floats
	# position_elements = [lat, lon, alt, pitch, roll, yaw, gear_indicator]
	position_elements = ["lat", "lon", "alt", "pitch", "roll", "yaw", "gear_indicator"]
	position_str = ','.join([str(x) for x in position])
	r.set('position', position_str)
	for i in range(len(position_elements)):
		r.set(f"position/{position_elements[i]}", position[i])
	
	# position_str = ','.join([str(x) for x in position])
	# r.publish('position_updates', position_str)
		
def get_setpoints_from_redis():
	setpoints = {
		"desired_roll": 0,
		"desired_pitch": 2,
		"desired_speed": 160,
		"desired_alt": 8000.0,
		"desired_hdg": 140
	}
	for key in setpoints:
		# if the key exists in the redis db, use it
		# otherwise, set it
		if r.exists(key):
			setpoints[key] = float(r.get(key))
		else:
			r.set(key, setpoints[key])
	return setpoints

def get_autopilot_enabled_from_redis():
	if r.exists("autopilot_enabled"):
		return int(r.get("autopilot_enabled").decode('utf-8')) == 1

ele_positions = []
ail_positions = []
thr_positions = []

def update_control_position_history(ctrl):
	ele_positions.append(ctrl[0])
	ail_positions.append(ctrl[1])
	thr_positions.append(ctrl[3])

	# if the list is longer than 20, pop the first element
	if len(ele_positions) > 20:
		ele_positions.pop(0)
		ail_positions.pop(0)
		thr_positions.pop(0)

def monitor():
	with xpc.XPlaneConnect() as client:
		while True:
			loop_start = datetime.now()
			print(f"loop start - {loop_start}")
			posi = client.getPOSI()
			write_position_to_redis(posi)

			ctrl = client.getCTRL()

			bearing_to_kbjc = get_bearing((posi[0], posi[1]), (KBJC_lat, KBJC_lon))
			dist_to_kbjc = haversine((posi[0], posi[1]), (KBJC_lat, KBJC_lon))
			#desired_hdg = 116 #bearing_to_kbjc

			multi_DREFs = client.getDREFs(DREFs) #speed=0, mag hdg=1, onground=2

			current_roll = posi[4]
			current_pitch = posi[3]
			#current_hdg = posi[5] # this is true, need to use DREF to get mag ''
			current_hdg = multi_DREFs[1][0]
			current_altitude = multi_DREFs[3][0]
			current_asi = multi_DREFs[0][0]
			onground = multi_DREFs[2][0]

			# get the setpoints from redis
			setpoints = get_setpoints_from_redis()
			desired_hdg = setpoints["desired_hdg"]
			desired_alt = setpoints["desired_alt"]
			desired_speed = setpoints["desired_speed"]

			# outer loops first
			altitude_PID.SetPoint = desired_alt
			altitude_PID.update(current_altitude)

			heading_error = get_angle_difference(desired_hdg, current_hdg)
			heading_error_PID.update(heading_error)

			speed_PID.SetPoint = desired_speed
			

			new_pitch_from_altitude = normalize(altitude_PID.output, -10, 10)
			new_roll_from_heading_error = normalize(heading_error_PID.output, -25, 25)
			# if new_pitch_from_altitude > 15:
			# 	new_pitch_from_altitude = 15
			# elif new_pitch_from_altitude < -15:
			# 	new_pitch_from_altitude = -15
			
			pitch_PID.SetPoint = new_pitch_from_altitude
			roll_PID.SetPoint = new_roll_from_heading_error

			roll_PID.update(current_roll)
			speed_PID.update(current_asi)
			pitch_PID.update(current_pitch)

			new_ail_ctrl = normalize(roll_PID.output, min=-1, max=1)
			new_ele_ctrl = normalize(pitch_PID.output, min=-1, max=1)
			new_thr_ctrl = normalize(speed_PID.output, min=0, max=1)

			previous_ail_ctrl = ail_positions[-1] if len(ail_positions) > 0 else 0
			previous_ele_ctrl = ele_positions[-1] if len(ele_positions) > 0 else 0
			previous_thr_ctrl = thr_positions[-1] if len(thr_positions) > 0 else 0

			# not currently functional - need to work on this 
			# new_ail_ctrl_limited = previous_ail_ctrl + new_ail_ctrl * MAX_DEFLECTION_PER_SECOND / update_frequency
			# new_ele_ctrl_limited = previous_ele_ctrl + new_ele_ctrl * MAX_DEFLECTION_PER_SECOND / update_frequency
			# new_thr_ctrl_limited = previous_thr_ctrl + new_thr_ctrl * MAX_DEFLECTION_PER_SECOND / update_frequency

			# update the control positions
			# update_control_position_history((new_ele_ctrl_limited, new_ail_ctrl_limited, 0.0, new_thr_ctrl_limited))
			update_control_position_history((new_ele_ctrl, new_ail_ctrl, 0.0, new_thr_ctrl))

			onground = -1
			if onground == 1:
				print("on ground, not sending controls")
			else:
				if get_autopilot_enabled_from_redis():
					# ctrl = [new_ele_ctrl_limited, new_ail_ctrl_limited, 0.0, new_thr_ctrl_limited]
					ctrl = [new_ele_ctrl, new_ail_ctrl, 0.0, new_thr_ctrl]
					client.sendCTRL(ctrl)

			loop_end = datetime.now()
			loop_duration = loop_end - loop_start

			output = f"current values --    roll: {current_roll: 0.3f},  pitch: {current_pitch: 0.3f},    hdg: {current_hdg:0.3f}, alt: {current_altitude:0.3f}, asi: {current_asi:0.3f}"
			output = output + "\n" + f"hdg error:                 {heading_error: 0.3f}"
			output = output + "\n" + f"new ctrl positions -- ail: {new_ail_ctrl: 0.4f},    ele: {new_ele_ctrl: 0.4f},   thr: {new_thr_ctrl:0.4f}"
			output = output + "\n" + f"PID outputs --   altitude: {altitude_PID.output: 0.4f},  pitch: {pitch_PID.output: 0.4f},   ail: {roll_PID.output: 0.3f},  hdg: {heading_error_PID.output: 0.3f}"
			output = output + "\n" + f"bearing to KBJC: {bearing_to_kbjc:3.1f}, dist: {dist_to_kbjc*0.000539957:0.2f} NM"
			output = output + "\n" + f"loop duration (ms): {loop_duration.total_seconds()*1000:0.2f} ms"
			print(output)
			sleep_until_next_tick(update_frequency)
			os.system('cls' if os.name == 'nt' else 'clear')



if __name__ == "__main__":
	monitor()

And the flask backend/front end. WebSockets are super cool – never used them before this. I was thinking I’d have to make a bunch of endpoints for every type of autopilot change I need. But this handles it far nicer:

from flask import Flask, render_template
from flask_socketio import SocketIO, emit
import redis

app = Flask(__name__)
socketio = SocketIO(app)
r = redis.StrictRedis(host='localhost', port=6379, db=0)

setpoints_of_interest = ['desired_hdg', 'desired_alt', 'desired_speed']
# get initial setpoints from Redis, send to clients

@app.route('/')
def index():
    return render_template('index.html')  # You'll need to create an HTML template

def update_setpoint(label, adjustment):
    # This function can be adapted to update setpoints and then emit updates via WebSocket
    current_value = float(r.get(label)) if r.exists(label) else 0.0

    if label == 'desired_hdg':
        new_value = (current_value + adjustment) % 360
    elif label == 'autopilot_enabled':
        new_value = adjustment
    else:
        new_value = current_value + adjustment

    r.set(label, new_value)
    # socketio.emit('update_setpoint', {label: new_value})  # Emit update to clients
    return new_value

@socketio.on('adjust_setpoint')
def handle_adjust_setpoint(json):
    label = json['label']
    adjustment = json['adjustment']
    # Your logic to adjust the setpoint in Redis and calculate new_value
    new_value = update_setpoint(label, adjustment)

    # Emit updated setpoint to all clients
    emit('update_setpoint', {label: new_value}, broadcast=True)

@socketio.on('connect')
def handle_connect():
    # Fetch initial setpoints from Redis
    initial_setpoints = {label: float(r.get(label)) if r.exists(label) else 0.0 for label in setpoints_of_interest}
    
    # Emit the initial setpoints to the connected client
    emit('update_setpoints', initial_setpoints)

if __name__ == '__main__':
    socketio.run(app)

And the http template:

<!DOCTYPE html>
<html>
<head>
    <title>Autopilot Interface</title>
    <script src="https://cdnjs.cloudflare.com/ajax/libs/socket.io/4.0.1/socket.io.js"></script>
<script type="text/javascript" charset="utf-8">
    var socket;  // Declare socket globally

    // Define adjustSetpoint globally
    function adjustSetpoint(label, adjustment) {
        socket.emit('adjust_setpoint', {label: label, adjustment: adjustment});
    }

    document.addEventListener('DOMContentLoaded', () => {
        socket = io.connect(location.protocol + '//' + document.domain + ':' + location.port);
        
        socket.on('connect', () => {
            console.log("Connected to WebSocket server.");
        });

        // Listen for update_setpoints event to initialize the UI with Redis values
        socket.on('update_setpoints', function(setpoints) {
          for (const [label, value] of Object.entries(setpoints)) {
              const element = document.getElementById(label);
              if (element) {
                  element.innerHTML = value;
              }
          }
      });

        // Listen for update_setpoint events from the server
        socket.on('update_setpoint', data => {
            // Assuming 'data' is an object like {label: new_value}
            for (const [label, value] of Object.entries(data)) {
                // Update the displayed value on the webpage
                const element = document.getElementById(label);
                if (element) {
                    element.innerHTML = value;
                }
            }
        });
    });
</script>

</head>
<body>
    <h1>Autopilot Interface</h1>
    <p>Current Setpoints:</p>
    <ul>
        <li>Heading: <span id="desired_hdg">0</span></li>
        <li>Altitude: <span id="desired_alt">0</span></li>
        <li>Speed: <span id="desired_speed">0</span></li>
    </ul>
    <p>Autopilot: <span id="autopilot_enabled">0</span></p>

    <!-- Example buttons for adjusting setpoints -->
    <button onclick="adjustSetpoint('desired_hdg', -10)">-10 HDG</button>
    <button onclick="adjustSetpoint('desired_hdg', 10)">+10 HDG</button>
    <br>
    <button onclick="adjustSetpoint('desired_alt', 500)">+500 ALT</button>
    <button onclick="adjustSetpoint('desired_alt', -500)">-500 ALT</button>
    <br>
    <button onclick="adjustSetpoint('desired_speed', 5)">+5 KTS</button>
    <button onclick="adjustSetpoint('desired_speed', -5)">-5 KTS</button>
    <br>
    <br>
    <button onclick="adjustSetpoint('autopilot_enabled', 1)">Enable Autopilot</button>
    <button onclick="adjustSetpoint('autopilot_enabled', 0)">Disable Autopilot</button>

</body>
</html>

This should be enough to get you going. I’ll come back and clean it up later (both my kids just woke up – 1.5 and 3.5 years!)

Categories
Python

Controlling AsrockRack CPU & chassis fan speeds via ipmitool & PID loops

I have a 1U Datto NAS unit that I got for super cheap ($150 for 4x 3.5″ SAS3, D-1541, 4x32GB, 2400MHz, 2x 10GbaseT) that has worked quite well for me. The only downside, which is present among basically all 1U devices, is the noise.

During my research for how to control the tiny, high-RPM (like 8000+ RPM) fans, I stumbled across a thread on the FreeNAS forums – https://www.truenas.com/community/threads/script-to-control-fan-speed-in-response-to-hard-drive-temperatures.41294/. At the bottom of the post, there are a few other links to improvements. I ran the Perl logging scripts that made up the improvements a bit but I am no Perl expert so didn’t up implementing it.

I am not 100% sure of the default AsrockRack behavior but it seemed that if CPU temp >60C, both case and CPU fans would spike. My BlueIris instance sends videos over a couple times an hour, which would spike the fans, which would be annoying during my work from home weeks while I was in the basement, working.

The idea of using a PID loop to control fan speeds stuck with me though, and with the help of GitHub Copilot, I busted out a proof of concept in an hour or so during a particularly boring set of meetings. There is a very high probability this will work for Supermicro motherboards as well with only minor tweaks.

This is how well it works. Note the drop at the end is due to changing CPU setpoint from 57C to 55C. The temperature is very, very steady.

Screenshot of TrueNAS Core reporting page for CPU temp showing very constant CPU temperature due to PID fan control loop

Without further ado, below is the main script (you’ll also need PID.py, which I borrowed a few years ago for the Coding a pitch/roll/altitude autopilot in X-Plane with Python series of posts). It can be run via SSH for debugging purposes (it is no fun to edit python via nano over ssh on FreeBSD), or with native commands if it detects it is running on the target system.

import logging
import time
import PID
import datetime
import socket
import subprocess

logging.basicConfig(
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.INFO)

# don't care about debug/info level logging from either of these packages
loggers_to_set_to_warning = ['paramiko.transport', 'invoke']
for l in loggers_to_set_to_warning:
    logging.getLogger(l).setLevel(logging.WARNING)

user = "root"
password = r"password"
host = None # this is set via hostname detection below
DESIRED_CPU_TEMP = 55.0
DESIRED_MB_TEMP = 35.0
# HDD_TEMP_THRESHOLD = 44.0 # unused
MIN_FAN_PCT = 10.0
drives_to_monitor = ['da0', 'da1', 'da2', 'da3', 'nvme0','nvme1','nvme2']

# command to set fans via ipmitool
# ipmitool raw 0x3a 0x01 0x00 0x04 0x04 0x04 0x04 0x04 0x04 0x04
					     #cpu #fan #fan #fan #fan #fan #fan ????

BASE_RAW_IPMI = 'raw 0x3a 0x01'
INITIAL_STATE = [32,32,32,32,32,32,32,32] # all 32/64 = half speed
FAN_CURRENT_STATE = INITIAL_STATE

hostname = socket.gethostname()
if 'truenas' in hostname or hostname == 'truenas-datto.home.fluffnet.net':
    host = 'localhost'
    c = None
else:
    from fabric import Connection # importing here because freebsd 13 (or whatever truenas core 13 is based on lacks pip to install packages)
    host = "10.98.1.9"
    c = Connection(host, port=22, user=user, connect_kwargs={'password': password})

current_sensor_readings = {}
cpu_temp_sensor = "CPU Temp"
cpu_fan_sensor = "CPU_FAN1"
case_fans = ["FRNT_FAN2","FRNT_FAN3","FRNT_FAN4"]
mb_temp_sensor = "MB Temp"

def limiter(input_value, min_value, max_value):
    if input_value < min_value:
        return min_value
    elif input_value > max_value:
        return max_value
    else:
        return input_value
    
def set_fans_via_ipmi(connection):
    # raw_ipmi_cmd = construct_raw_ipmi_cmd() # not needed unless debug and remote
    # logging.info(raw_ipmi_cmd)
    if host == 'localhost':
        result = subprocess.run(['ipmitool', 'raw', '0x3a', '0x01',
                                 '0x'+FAN_CURRENT_STATE[0], 
                                 '0x'+FAN_CURRENT_STATE[1],
                                 '0x'+FAN_CURRENT_STATE[2],
                                 '0x'+FAN_CURRENT_STATE[3],
                                 '0x'+FAN_CURRENT_STATE[4],
                                 '0x'+FAN_CURRENT_STATE[5],
                                 '0x'+FAN_CURRENT_STATE[6],
                                 '0x'+FAN_CURRENT_STATE[7]], stdout=subprocess.PIPE)
    else:
        raw_ipmi_cmd = construct_raw_ipmi_cmd()
        result = connection.run('ipmitool ' + raw_ipmi_cmd, hide=True)
    #logging.info(result.stdout)

def scale_to_64ths(input_percent):
    result = input_percent / 100.0 * 64.0
    # prepend 0 to make it a hex value
    result_int = int(result)
    result_str = str(result_int)
    if len(result_str) == 1:
        result_str = '0' + result_str # turn a 0x1 into a 0x01
    return result_str

def adjust_cpu_fan_setpoint(hex_value_64ths):
    FAN_CURRENT_STATE[0] = hex_value_64ths

def adjust_case_fan_setpoint(hex_value_64ths):
    for i in range(len(FAN_CURRENT_STATE) - 1):
        FAN_CURRENT_STATE[i + 1] = hex_value_64ths

def construct_raw_ipmi_cmd():
    new_state = BASE_RAW_IPMI
    for i in range(len(FAN_CURRENT_STATE)):
        new_state = new_state + ' 0x' + str(FAN_CURRENT_STATE[i])
    return new_state

def populate_sensor_readings(sensor, value):
    current_sensor_readings[sensor] = value

def query_ipmitool(connection):
    if host == 'localhost':
        result = subprocess.run(['ipmitool', 'sensor'], stdout=subprocess.PIPE)
        result = result.stdout.decode('utf-8')
    else:
        result = connection.run('ipmitool sensor', hide=True).stdout
    for line in result.split('\n'):
        if line == '':
            break

        row_data = line.split('|')
        sensor_name = row_data[0].strip()
        sensor_value = row_data[1].strip()
        populate_sensor_readings(sensor_name, sensor_value)
        logging.debug(sensor_name + " = " + sensor_value)

def wait_until_top_of_second():
    # calculate time until next top of second
    sleep_seconds = 1 - (time.time() % 1)
    time.sleep(sleep_seconds)

def get_drive_temp(connection, drive):
    ###########################################
    # this is copilot generated, and untested #
    # not sure about row_data[0] stuff        #
    ###########################################
    if host == 'localhost':
        result = subprocess.run(['smartctl', '-A', '/dev/' + drive], stdout=subprocess.PIPE)
        result = result.stdout.decode('utf-8')
    else:
        result = connection.run('smartctl -A /dev/' + drive, hide=True).stdout
    for line in result.split('\n'):
        if line == '':
            break

        row_data = line.split()
        if len(row_data) < 10:
            continue
        if row_data[0] == '194':
            drive_temp = row_data[9]
            logging.info(drive + " = " + drive_temp)

def query_drive_temps(connection):
    for drive in drives_to_monitor:
        get_drive_temp(connection, drive)

# tune these values. the first one is the most important and basically is the multiplier for
# how much you want the fans to run in proportion to the actual-setpoint delta.
# example: if setpoint is 55 and actual is 59, the delta is 4, which is multiplied by 4 for
# 16 output, which if converted to 64ths would be 25% fan speed.
# the 2nd parameter is the integral, which is a cumulative error counter of sorts.
# the 3rd parameter is derivative, which should probably be set to 0 (if tuned correctly, it prevents over/undershoot)
cpu_pid = PID.PID(4.0, 2.5, 0.1)
cpu_pid.SetPoint = DESIRED_CPU_TEMP

mb_pid = PID.PID(2.5, 1.5, 0.1)
mb_pid.SetPoint = DESIRED_MB_TEMP

wait_until_top_of_second()

# set last_execution to now minus one minute to force first execution
last_execution = datetime.datetime.now() - datetime.timedelta(minutes=1)

while(True):
    if datetime.datetime.now().minute != last_execution.minute:
        # TODO: get drive temps
        logging.info("getting drive temps")

    query_ipmitool(c)
    cpu_temp = float(current_sensor_readings[cpu_temp_sensor])
    mb_temp = float(current_sensor_readings[mb_temp_sensor])

    cpu_pid.update(cpu_temp)
    mb_pid.update(mb_temp)
    
    logging.info(f'CPU: {cpu_temp:5.2f} MB: {mb_temp:5.2f} CPU PID: {cpu_pid.output:5.2f} MB PID: {mb_pid.output:5.2f}')
    
    # note negative multiplier!!
    cpu_fan_setpoint = scale_to_64ths(limiter(-1*cpu_pid.output,MIN_FAN_PCT,100))
    case_fan_setpoint = scale_to_64ths(limiter(-1*mb_pid.output,MIN_FAN_PCT,100))
    adjust_cpu_fan_setpoint(cpu_fan_setpoint)
    adjust_case_fan_setpoint(case_fan_setpoint)
    set_fans_via_ipmi(c)

    last_execution = datetime.datetime.now()
    wait_until_top_of_second()

As you can see, it is not quite complete. I still need to add the hard drive temp detection stuff to ramp case fans a bit if the drives get hot. Those NVMe drives sure get hot (especially the Intel P4800X I have in one of the PCIe slots – see Intel Optane P1600X & P4800X as ZFS SLOG/ZIL for details).

This is what the output looks like (keep in mind the -1 multiplier in the setpoint stuff!):

screenshot showing second-by-second output of the PID fan control loop keeping a very consistent 55C CPU temp

And here is a summary of the script provided by the ever helpful ChatGPT with some high-level summaries. I fed it the code and said “write a blog post about this”. I took out the intro paragraph but left the rest.

The Script Overview

This script leverages the PID controller – a control loop mechanism that calculates an “error” value as the difference between a measured process variable and a desired setpoint. It attempts to minimize the error by adjusting the process control inputs.

In this script, we are implementing a fan speed control system that reacts to temperature changes dynamically. Our desired setpoint is the optimal temperature we want to maintain for both the CPU (DESIRED_CPU_TEMP) and the motherboard (DESIRED_MB_TEMP).

Exploring the Script

The Python script begins by setting up the necessary libraries and logging. The logging library is used to log useful debug information, such as the current CPU temperature and fan speed, which can help you understand what’s happening in the script.

Next, we have a section where we define some constants, such as the desired temperatures and minimum fan speed percentage. It also defines a connection to the localhost or to a remote host, depending on the hostname.

It uses ipmitool – a utility for managing and configuring devices that support the Intelligent Platform Management Interface (IPMI) to control fan speeds.

The limiter() function ensures the fan speed remains within the predefined minimum and maximum thresholds. It’s important as it prevents the fan speed from reaching potentially harmful levels.

The script also includes several functions to set and adjust fan speeds, as well as to construct the appropriate ipmitool command. One thing to note is that the fan speeds are set using hexadecimal values, so there are functions to convert the desired fan speed percentages to hexadecimal.

A very useful function is query_ipmitool(). This function runs the ipmitool command, gets the current sensor readings, and stores them in the current_sensor_readings dictionary for further processing.

The script utilizes two PID controllers, cpu_pid for the CPU and mb_pid for the motherboard, with specific setpoints set to desired temperatures.

The core logic is inside the infinite loop at the end of the script. The loop constantly reads temperature sensor data and adjusts the fan speeds accordingly. The loop runs once every second, so it can respond quickly to changes in CPU and motherboard temperatures.

Conclusion

This script demonstrates a neat way of controlling fan speed in response to CPU and motherboard temperatures. It’s an effective approach to ensure that your system runs smoothly and without overheating, while minimizing noise.

Categories
AI Blog Admin

Using ChatGPT to fight spam on WordPress

Like all other WordPress blogs, this one attracts a good number of spam comments. I get usually 5-10 per day, but yesterday there were like 30. Almost all of them contain Cyrillic characters:

screenshot showing spam comments containing cyrillic characters

Since I specify that all comments are held until approved, that means I need to either approve or trash or spam every comment.

Enter ChatGPT

I use ChatGPT (specifically GPT 4) for a number of minor coding tasks. I find it helpful. It is not perfect. That doesn’t mean it isn’t useful. I decided to have it ponder this issue. I work with Python a lot at work and it’s typically my scripting language of choice. My initial request is as follows:

write a python script to log into a wordpress site as an admin, get the top 5 comments, see if there are any Cyrillic characters in them, and if there are, delete said comment

It was understandably unhappy about potentially being asked to “hack” a WordPress site, so I had to reassure it that I was the owner of said site:

yes, I have my own blog. I am the owner. I have the admin credentials. please proceed with how to delete those comments

It happily complied and spit out some very usable code:

chatgpt conversation around a python script to delete blog spam comments

After a bit more back and forth:

does this get comments in a pending state? I don't let them be published instantly because most of them are spam

I was informed there are 5 different comment states: approved, hold, spam, trash, unapproved.

perfect. can you please adjust the script to get the pending, unapproved, and hold comments. also make it top 20

It ran perfectly after copy + pasting the Python. Unfortunately I created an application password for my main login on this site and forgot to change the delete URL so it happily sent my application password and username to yourwebsite.com. After revoking that password and realizing there should be a base url:

please split out the site url (https://austinsnerdythings.com) from base_url for both retrieving the comments as well as deleting

I was left with a 100% functional script. This took 3-4 min of back and forth with ChatGPT 4.0. I definitely could’ve code this up myself with the basic structure in 15 minutes or so but I would’ve had to work out the json format for comments and all that. It is so much easier to just test out what ChatGPT provides and alter as necessary:

import requests
import json
import re

def has_cyrillic(text):
    return bool(re.search('[\u0400-\u04FF]', text))

site_url = "https://austinsnerdythings.com"
base_url = f"{site_url}/wp-json/wp/v2/comments?per_page=20&status="
statuses = ['pending', 'hold', 'unapproved']
auth = ('yourusername', 'yourpassword')

for status in statuses:
    url = base_url + status
    response = requests.get(url, auth=auth)
    comments = json.loads(response.text)

    cyrillic_comments = []

    for comment in comments:
        if has_cyrillic(comment['content']['rendered']):
            cyrillic_comments.append(comment)

    # delete comments with Cyrillic characters
    for comment in cyrillic_comments:
        delete_url = f"{site_url}/wp-json/wp/v2/comments/" + str(comment['id'])
        response = requests.delete(delete_url, auth=auth)
        if response.status_code == 200:
            print(f"Successfully deleted comment with id {comment['id']}")
        else:
            print(f"Failed to delete comment with id {comment['id']}. Response code: {response.status_code}")

Finishing touches

The other finishing touches I did were as follows:

  • Created a user specific for comment moderation. I used the ‘Members’ plugin to create a very limited role (only permissions granted are the necessary ones: Moderate Comments, Read, Edit Posts, Edit Others’ Posts, Edit Published Posts) and assigned said user to it. This greatly limits the potential for abuse if the account password falls into the wrong hands.
  • Copied the script to the web host running the blog
  • Set it to be executed hourly via crontab

Now I have a fully automated script that deletes any blog comments with any Cyrillic characters!

You may be asking yourself why I don’t use Akismet or Recaptcha or anything like that. I found the speed tradeoff to not be worthwhile. They definitely slowed down my site for minimal benefit. It only took a couple minutes a day to delete the spam comments. But now it takes no time because it’s automated!

Here’s the link to the full ChatGPT conversation:

https://chat.openai.com/share/aad6a095-9b90-42c5-b1ca-de2a18828ba2

Results

I created a spam comment and ran the script (after adding a print line to show the comment). Here’s the output:

And the web logs showing the 3 status being retrieved via GET and the DELETE for the single spam comment:

I am quite satisfied with this basic solution. It took me far longer to type up this blog post than it did to get the script working.

Categories
AI

Stable Diffusion Tutorial – Nvidia GPU Installation

Like most other internet-connected people, I have seen the increase in AI-generated content in recent months. ChatGPT is fun to use and I’m sure there are plenty of useful use cases for it but I’m not sure I have the imagination required to use it to it’s full potential. The AI art fad of a couple months ago was cool too. In the back of my mind, I kept thinking “where will AI take us in the next couple years”. I still don’t know the answer to that. The only “art” I am good at is pottery (thanks to high-school pottery class – I took 4 semesters of it and had a great time doing so, whole different story). But now I’m able to generate my own AI art thanks to a guide I found the other day on /g/. I am re-writing it here with screenshots and a bit more detail to try and make it more accessible to general users.

NOTE: You need a decent/recent Nvidia GPU to follow this guide. I have a RTX 2080 Super with 8GB of VRAM. There are low-memory workarounds but I haven’t tested them yet. An absolute limit is 2GB VRAM, and a GTX 7xx (Maxwell architecture) or newer GPU.

Stable Diffusion Tutorial Contents

  1. Installing Python 3.10
  2. Installing Git (the source control system)
  3. Clone the Automatic1111 web UI (this is the front-end for using the various models)
  4. Download models
  5. Adjust memory limits & enable listening outside of localhost
  6. First run
  7. Launching the web UI
  8. Generating Stable Diffusion images

Video version of this install guide

Coming soon. I always do the written guide first, then record based off the written guide. Hopefully by end of day (mountain time) Feb 24.

1 – Installing Python 3.10

This is relatively straight-forward. To check your Python version, go to a command line and enter

python --version

If you already have Python 3.10.x installed (as seen in the screenshot below), you’re good to go (minor version doesn’t matter).

Python 3.10 installed for Stable Diffusion

If not, go to the Python 3 download page and select the most recent 3.10 version. As of writing, the most recent is 3.10.10. Download the x64 installer and install. Ensure the “add python.exe to PATH” checkbox is checked. Adding python.exe to PATH means it can be called with only python at a command prompt instead of the full path, which is something like c:/users/whatever/somedirectory/moredirectories/3.10.10/python.exe.

Installing python and adding python.exe to PATH

2 – Installing Git (the source control system)

This is easier than Python – just install it – https://git-scm.com/downloads. Check for presence and version with git –version:

git installed and ready to go for Stable Diffusion

3 – Clone the Automatic1111 web UI (this is the front-end for using the various models)

With Git, clone means to download a copy of the code repository. When you clone a repo, a new directory is created in whatever directory the command is run in. Meaning that if you navigate to your desktop, and run git clone xyz, you will have a new folder on your desktop named xyz with the contents of the repository. To keep things simple, I am going to create a folder for all my Stable Diffusion stuff in the C:/ root named sd and then clone into that folder.

Open a command prompt and enter

cd c:\

Next create the sd folder and enter it:

mkdir sd
cd sd

Now clone the repository while in your sd folder:

git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui

After the git clone completes, there will be a new directory called ‘stable-diffusion-webui’:

stable-diffusion-webui cloned and ready to download models

4 – Download models

“Models” are what actually generate the content based on provided prompts. Generally, you will want to use pre-trained models. Luckily, there are many ready to use. Training your own model is far beyond the scope of this basic installation tutorial. Training your own models generally also requires huge amounts of time crunching numbers on very powerful GPUs.

As of writing, Stable Diffusion 1.5 (SD 1.5) is the recommended model. It can be downloaded (note: this is a 7.5GB file) from huggingface here.

Take the downloaded file, and place it in the stable-diffusion-webui/models/Stable-diffusion directory and rename it to model.ckpt (it can be named anything you want but the web UI automatically attempts to load a model named ‘model.ckpt’ upon start). If you’re following along with the same directory structure as me, this file will end up at C:\sd\stable-diffusion-webui\models\Stable-diffusion\model.ckpt.

Another popular model is Deliberate. It can be downloaded (4.2GB) here. Put it in the same folder as the other model. No need to rename the 2nd (and other) models.

After downloading both models, the directory should look like this:

Stable Diffusion 1.5 (SD 1.5) and Deliberate_v11 models ready for use

5 – Adjust memory limits & enable listening outside of localhost (command line arguments)

Inside the main stable-diffusion-webui directory live a number of launcher files and helper files. Find webui-user.bat and edit it (.bat files can be right-clicked -> edit).

Add –medvram (two dashes) after the equals sign of COMMANDLINE_ARGS. If you also want the UI to listen on all IP addresses instead of just localhost (don’t do this unless you know what that means), also add –listen.

webui-user.bat after edits

@echo off

set PYTHON=
set GIT=
set VENV_DIR=
set COMMANDLINE_ARGS=--listen --medvram

call webui.bat

6 – First run

The UI tool (developed by automatic1111) will automatically download a variety of requirements upon first launch. It will take a few minutes to complete. Double-click the webui-user.bat file we just edited. It calls a few .bat files and eventually launches a Python file. The .bat files are essentially glue to stick a bunch of stuff together for the main file.

The very first thing it does is creates a Python venv (virtual environment) to keep the Stable Diffusion packages separate from your other Python packages. Then it pip installs a bunch of packages related to cuda/pytorch/numpy/etc so Python can interact with your GPU.

webui-user.bat using pip to install necessary python packages like cuda

After everything is installed and ready to go, you will see a line that says: Running on local URL: http://127.0.0.1:7860. That means the Python web server UI is running on your own computer on port 7860 (if you added –listen to the launch args, it will show 0.0.0.0:7860, which means it is listening on all IP addresses and can be accessed by external machinse).

stable-diffusion-webui launched and ready to load

7 – Launching the web UI

With the web UI server running, it can be accessed via browser on the same computer running the Python at http://127.0.0.1:7860. That link should work for you if you click it.

Note that if the Python process closes for whatever reason (you close the command window, your computer reboots, etc), you need to double-click webui-user.bat to relaunch it and it needs to be running any time you want to access the web UI.

Automatic1111 stable diffusion web UI up and running

As seen in the screenshot, there are a ton of parameters/settings. I’ll highlight a few in the next section

8 – Generating Stable Diffusion images

This is the tricky part. The prompts make or break your generation. I am still learning. The prompt is where you enter what you want to see. Negative prompt is where you enter what you don’t want to see.

Let’s start simple, with cat in the prompt. Then click generate. A very reasonable-looking cat should soon appear (typically takes a couple seconds per image):

AI-generated cat with stable diffusion 1.5 with default settings

To highlight a few of the settings/sliders:

  • Stable diffusion checkpoint – model selector. Note that it’ll take a bit to load a new model (the multi-GB files need to be read in their entirety and ingested).
  • Prompt – what you want to see
  • Negative prompt – what you don’t want to see
  • Sampling method – various methods to sample new points
  • Sampling steps – how many iterations to use for image generation for a single image
  • Width – width of image to generate (in pixels). NOTE, you need a very powerful GPU with a ton of VRAM to go much higher than the default 512
  • Height – height of image to generate (in pixels). Same warning applies as width
  • Batch count – how many images to include in a batch generation
  • Batch size – haven’t used yet, presumably used to specify how many batches to generate
  • CFG Scale – this slider tells the models how specific they need to be for the prompt. Higher is more specific. Really high values (>12ish) start to get a bit abstract. Probably want to be in the range of 3-10 for this slider.
  • Seed – random number generator seed. -1 means use a new seed for every image.

Some thoughts on prompt/negative prompt

From my ~24 hours using this tool, it is very clear that prompt/negative prompts are what make or break your generation. I think that your ability as a pre-AI artist would come in handy here. I am no artist so I have a hard time putting what I want to see into words. Take example prompt: valley, fairytale treehouse village covered, matte painting, highly detailed, dynamic lighting, cinematic, realism, realistic, photo real, sunset, detailed, high contrast, denoised, centered. I would’ve said “fairytale treehouse” and stopped at that. Compare the two prompts below with the more detailed prompt directly below and the basic “fairytale treehouse” prompt after that:

AI-generated “fairytale treehouse” via stable diffusion. Prompt: valley, fairytale treehouse village covered, matte painting, highly detailed, dynamic lighting, cinematic, realism, realistic, photo real, sunset, detailed, high contrast, denoised, centered
AI-generated “fairytale treehouse” via stable diffusion. Prompt: fairytale treehouse

One of these looks perfectly in place for a fantasy story. The other you could very possibly see in person in a nearby forest.

Both positive and negative can get very long very quickly. Many of the AI-generated artifacts present over the last month or two can be eliminated with negative prompt entries.

Example negative prompt: ugly, deformed, malformed, lowres, mutant, mutated, disfigured, compressed, noise, artifacts, dithering, simple, watermark, text, font, signage, collage, pixel

I will not pretend to know what works well vs not. Google is your friend here. I believe that “prompt engineering” will be very important in AI’s future. Google is your friend here.

Conclusion

AI-generated content is here. It will not be going away. Even if it is outlawed, the code is out there. AI will be a huge part of our future, regardless of if you want it or not. As the saying goes – pandora’s box is now open.

I figured it was worth trying. The guide this is based off made it relatively easy for me (but I do have above-average computer skill), and I wanted to make it even easier. Hopefully you found this ‘how to set up stable diffusion’ guide easy to use as well. Please let me know in the comments section if you have any questions/comments/feedback – I check at least daily!

Resources

Huge shout out to whoever wrote the guide (“all anons”) at https://rentry.org/voldy. That is essentially where this entire guide came from.